November 8, 2010

SUBJECT
Joint Study Session on the Stanford in Redwood City Project

RECOMMENDATION
1. Consider the project update and overview of the draft Stanford in Redwood City Campus Precise Plan;
2. Direct the City Manager to begin a negotiation process with Stanford University for a development agreement.

BACKGROUND
The Stanford in Redwood City project proposes to occupy a 35-acre portion of a larger 48-acre (former Mid-Point Technology Park) campus that is bisected by Broadway and generally bounded by Highway 101, Douglas Avenue, Bay Road and Second Avenue. Stanford University has submitted a conceptual design plan for the 35-acre project site that calls for the demolition of 535,000 square feet of existing office research and development (R&D) space that is proposed for replacement with Stanford University administrative office uses (75% to 80%), research and development (R&D) uses (10% to 15%), and medical clinic uses (10% to 15%). Common support uses (i.e. cafeteria, childcare care center, fitness center and other employee amenities) would occupy up to 80,000 square feet of space.

The concept plan proposes up to 1,518,000 square feet of building space and approximately 4,500 parking spaces. The project will require a Zoning Amendment from Industrial Restricted to Planned Community District consistent with the Stanford in Redwood City Campus Precise Plan (Stanford Precise Plan).

Approximately 11 acres located within the Stanford Precise Plan boundaries are occupied by the Stanford Medical Outpatient Clinics and 2.3 acres are occupied by Genentech. Neither of these two facilities has indicated plans to change land use; and thus the 35 acre portion of the campus owned by Stanford University is the focus of the Stanford Precise Plan.

At the Joint Study Session, the City’s urban design consultant, Terry Bottomley of Bottomley Design and Planning, will provide an overview and status update on the draft Stanford Precise Plan. The Study Session is not a decision making meeting nor is it a discussion of the potential environmental effects of the Stanford in Redwood City project. The public hearing on the Draft Environmental Impact Report (EIR) for the project will be held before the Planning Commission in early 2011.

The purpose of holding this update as a Joint Study Session is to help facilitate dialogue between the City Council and Planning Commission at this point in the process before each group will begin efforts on different aspects of the project. The Planning Commission will
focus on the Stanford EIR and Precise Plan documents, which will ultimately assist the City Council with their review and consideration of the Stanford Precise Plan requirements and terms for the development agreement.

Stanford in Redwood City Campus Precise Plan
Bottomley Design and Planning is preparing the Stanford Precise Plan to help guide future development of the Stanford in Redwood City project. Chapters 1 and 2 are the primary components of the Stanford Precise Plan. These chapters describe the background issues, development goals, development standards (height, setbacks, parking, etc) and urban design guidelines (building orientation, campus open space and pedestrian ways, streetscapes, landscaping, etc.) that will help guide the Stanford project’s growth and development over time. Stanford Precise Plan Chapters 3 and 4 are anticipated to be available for Council, Planning Commission and public review in December and are currently being coordinated with the Draft Environmental Impact Report (EIR) to ensure that the transportation/circulation, capital improvements, implementation procedures and mitigation measures are appropriately coordinated between these two documents.

Development Agreement
It is common for municipalities to enter into a development agreement when considering large phased projects such as the Stanford in Redwood City project. Development agreements are contracts negotiated between the project applicant and public agencies. Neither Stanford, as applicant, nor the City, as the lead governmental agency, is required to enter into a development agreement. A development agreement stipulates mutually agreed upon benefits and obligations for each party. Development agreements facilitate, secure and reduce the cost of entitlements for phased projects over long periods of time. In this case, project-related issues such as City fiscal impacts, environmental impacts, and housing and childcare impacts are being evaluated and the results of the pertinent studies can be considered in the establishment of appropriate terms for the development agreement.

Next Steps
The schedule goals for this project are as follows:
- December 2010 - January 2011- Release of the Draft EIR and Precise Plan. If released in December near the holiday season, the Draft EIR and Precise Plan will likely be available for a 60 day (vs. the normally required 45 day) public review/comment period.
- February- March 2011 - Planning Commission hearing on the draft EIR and Precise Plan
- January through June 2011 – Focused development agreement negotiations
- Spring and Summer 2011 - Planning Commission recommendation hearing on the final EIR and Precise Plan and City Council hearing on the final Precise Plan and development agreement for completion by October 2011.

Alternative
Provide alternative direction regarding the Stanford Precise Plan and/or the proposed development agreement process.
FISCAL IMPACT
The long-term fiscal impacts of the proposed project will be assessed in the first half of 2011, and will inform subsequent staff recommendations and Planning Commission / City Council decisions.

Maureen Riordan
Senior Planner

Jill Ekas
Planning, Housing, and Economic Development Director

City Manager
Peter Ingram

ATTACHMENTS
1. Draft Stanford in Redwood City Campus Precise Plan, Chapters 1 and 2, prepared by Bottomley Design and Planning
2. Principles to Guide Negotiation of the Stanford in Redwood City Development Agreement (Guiding Principles), September 2009
TABLE OF CONTENTS

CHAPTER I - BACKGROUND, ISSUES, & GOALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Precise Plan Background and Process</td>
<td>2</td>
</tr>
<tr>
<td>The Precise Plan Area</td>
<td>3</td>
</tr>
<tr>
<td>Local Context</td>
<td>5</td>
</tr>
<tr>
<td>Existing Plans and Regulations</td>
<td>7</td>
</tr>
<tr>
<td>Precise Plan Issues & Goals</td>
<td>7</td>
</tr>
</tbody>
</table>

CHAPTER II - DEVELOPMENT STANDARDS & URBAN DESIGN GUIDELINES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Standards</td>
<td>12</td>
</tr>
<tr>
<td>I. Land Use & Development</td>
<td>12</td>
</tr>
<tr>
<td>II. Building Height & Setbacks</td>
<td>16</td>
</tr>
<tr>
<td>III. Site Development & Parking</td>
<td>19</td>
</tr>
<tr>
<td>Urban Design Guidelines</td>
<td>27</td>
</tr>
<tr>
<td>I. Development Phasing</td>
<td>27</td>
</tr>
<tr>
<td>II. Building Orientation & Design</td>
<td>27</td>
</tr>
<tr>
<td>III. Pedestrian Ways & Campus Open Spaces</td>
<td>36</td>
</tr>
<tr>
<td>IV. Streets & Streetscape</td>
<td>40</td>
</tr>
<tr>
<td>V. Hardscape & Landscape Improvements</td>
<td>41</td>
</tr>
</tbody>
</table>

CHAPTER III - CIRCULATION POLICIES & CAPITAL IMPROVEMENTS

[To be completed]

CHAPTER IV - IMPLEMENTATION

[To be completed]
<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Conditions</td>
<td>4</td>
</tr>
<tr>
<td>Context Map</td>
<td>6</td>
</tr>
<tr>
<td>General Plan Map</td>
<td>8</td>
</tr>
<tr>
<td>Zoning Map</td>
<td>9</td>
</tr>
<tr>
<td>Plan Area Blocks</td>
<td>13</td>
</tr>
<tr>
<td>Maximum Development Intensity & Building Height</td>
<td>17</td>
</tr>
<tr>
<td>Potential Development Sequence</td>
<td>21</td>
</tr>
<tr>
<td>Urban Design Concept</td>
<td>23</td>
</tr>
<tr>
<td>Broadway - Parallel Parking Option</td>
<td>47</td>
</tr>
<tr>
<td>Broadway - Light Rail Option</td>
<td>48</td>
</tr>
<tr>
<td>Harrington Avenue</td>
<td>49</td>
</tr>
<tr>
<td>Warrington Avenue (North of Broadway)</td>
<td>51</td>
</tr>
<tr>
<td>Warrington Avenue (South of Broadway)</td>
<td>52</td>
</tr>
<tr>
<td>Barrow Avenue</td>
<td>53</td>
</tr>
<tr>
<td>Douglas Avenue</td>
<td>54</td>
</tr>
<tr>
<td>Douglas Avenue (South of Broadway)</td>
<td>54</td>
</tr>
<tr>
<td>Bay Road (4-Lane Option)</td>
<td>55</td>
</tr>
<tr>
<td>Bay Road (3-Lane w/ Bike Lane Option)</td>
<td>55</td>
</tr>
</tbody>
</table>
Chapter I - Background, Issues, & Goals

Introduction

As the Bay Area continues to grow, so will reliance on infill development. Reducing sprawl, encouraging transit use, promoting local investment, and slowing the production of greenhouse gases requires that communities be developed in a more intensive, pedestrian-oriented manner than they have in the past. High land costs in Redwood City and other Peninsula cities further support this trend. The "repurposing" of underdeveloped properties - those with large expanses of surface parking, for example - are one of the principal means to accommodate new investment.

The Stanford in Redwood City Campus Precise Plan contains land use, urban design, and circulation policies to create a distinctive facility on the site of the former Mid-Point Technology Park. The Precise Plan's policies are intended to guide transition of this low-rise, parking-lot-oriented complex to a campus workplace that is denser, greener, and more attractive architecturally. Transit-supportive planning approaches are intended to minimize the effect of this change on nearby neighborhoods. Utilization of flexible building forms will allow long-term tenanting and re-tenanting by office, medical office, research and development, and other uses to maximize viability. The Precise Plan's policies are consistent with the newly-adopted Redwood City General Plan policies for the area, and would supersede the area's current zoning requirements. CEQA-related mitigation measures and specific zoning conditions are incorporated as appropriate.

The Precise Plan is a zoning document with policies, guidelines, and standards, rather than a development blueprint. It establishes the City's development goals and requirements with the understanding that the nature of workplace facilities can change over time. The Precise Plan's policy envelope for development intensity, building heights and orientation, parking, architectural design, and other elements is intended to be flexible enough to allow for changing conditions, but definitive enough to ensure that the City's vision for the Precise Plan Area is achieved.

The Precise Plan focuses on the issue areas listed below. These issues and the Precise Plan goals related to them are discussed later in this chapter.

1. Neighborhood Compatibility
2. The Broadway Corridor
3. Campus Access, Circulation, and Parking
4. Building Orientation, Pedestrian Ways, and Open Space
5. Architectural Character
6. Environmental Sustainability
7. Relationship to Downtown and Surrounding Areas

Precise Plan Background and Process

Stanford University purchased an approximate 35-acre portion of the former Mid-Point Technology Park properties, with the intention of relocating administrative functions that do not require a presence on the University's main campus near Palo Alto. Potential additional uses envisioned for the site included medical clinics and/or laboratory related research and development facilities. A separate Stanford entity, the Stanford Hospital and Clinics, renovated the former 11-acre Excite @ Home headquarters for medical clinics, called the Stanford Medical Outpatient Clinics (SMOC), which opened in February 2009. Genentech owns a 2.3-acre portion of the former Mid-Point Technology Park properties.

Stanford University applied for General Plan and Zoning changes to accommodate potential new development for the 35-acre Mid-Point properties in May 2008. In July, the Planning Commission recommended that the City Council initiate a General Plan/Zoning Map Amendment & Precise Plan study, and in August 2008, the City Council approved initiation of the study. A Planning Commission-sponsored public scoping session for the Precise Plan Environmental Impact Report (EIR) was held in October 2008. The Precise Plan EIR addresses only the 35-acre area owned by Stan-
Chapter 1 - Background, Issues & Goals

Existing condition along Bayshore Freeway / US 101.

Existing view of Douglas Avenue, looking south.

ford University. Use changes and/or new development on other properties may require additional CEQA review.

Three Neighborhood/Community Meetings were sponsored by the City to review planning issues and initial design and development concepts: November 20, 2008, at the Police Activities League building; December 3, 2008, at Summit Preparatory School, and; January 9, 2009, at Hoover School. Community input from these meetings was posted on the City’s website, with key issues including potential traffic levels, pedestrian safety, building heights, and neighborhood access to open space. Stanford University’s planning team also conducted additional outreach meetings with various community-based organizations, including the Friendly Acres and Redwood Village Neighborhood Associations, and the Redwood City Chamber of Commerce.

City staff has worked with Stanford to refine its development concept based on these outreach meetings, and to establish the basic regulatory framework for the Precise Plan.

The Precise Plan Area

The Precise Plan Area is approximately 48.3 acres in size. It is generally flat, with no native vegetation, creeks, or other significant natural features. It is bordered by the Bayshore Freeway/US 101 on the north; Bay Road on the south; Rolison Road, Fire Department Station No. 11 and Spinas Park on the east; and Douglas Avenue on the west. Broadway extends east west through the center of the Precise Plan Area, linking it directly to Downtown Redwood City, which is approximately 1 mile to the west.

Elements that are adjacent to, but not within the Precise Plan area, include the Fire Station No. 11 and Spinas Park, both are located along Second Avenue. Spinas Park includes tennis courts, a play
structure, and planters, and provides a buffer to the nearby Friendly Acres neighborhood. North across Broadway from the fire station and located between 2nd Avenue and Rolison Road is a seven-story apartment building, the tallest structure in the vicinity. Approximately 11 of the Precise Plan Area’s 48.3 total acres are occupied by the Stanford Medical Outpatient Clinics (SMOC), and 2.3 acres are occupied by Genentech. Neither of these two facilities has indicated plans to change land use, and the 35 remaining acres are the focus of the Precise Plan’s policies.

The Precise Plan Area as a whole currently contains a total of approximately 1,018,000 square feet of building space, and has an average floor-area ratio (FAR) of approximately 0.5. The former Mid-Point buildings contain approximately 536,000 square feet, SMOC contains approximately 360,000 square feet, and the Genentech facility contains approximately 68,000 square feet; the Genentech and SMOC sites both have FARs of approximately 0.7. Existing buildings range from one to four stories in height. The Genentech facility is a tall one-story building, SMOC consists of three- and four-story buildings, and the remaining former Mid-Point buildings are one and two stories.

Building coverage for the 48-acre campus is approximately 25%. Asphalt parking lots surround most buildings and occupy approximately 60% of the total surface area; pervious (i.e. landscaped) surface area totals approximately 15%.

Local Context

The Precise Plan Area is located on the eastern edge of a light industrial area that extends to Chestnut Street on the west and Spring Street and Fair Oaks Avenue on the south. Broadway provides access west from the Precise Plan Area to Woodside Road and Downtown Redwood City; Broadway terminates just east of the Precise Plan Area at 5th Avenue. The General Plan envisions the Broadway Corridor between the Precise Plan Area and Downtown for higher-density, transit-oriented, mixed-use development. Bay Road also provides access west to Woodside Road and access east to Marsh Road via Florence Street. Rolison Road provides access east along the US 101 frontage to Marsh Road as well. Major US 101 interchanges are located at Woodside Road and at Marsh Road.

A variety of different land uses surround the Precise Plan Area. North across US 101 are islands, sloughs and salt ponds bordering San Francisco Bay. South across Bay Road is an unincorporated area
of San Mateo County that contains a mix of small-scale industrial businesses. South and west of this industrial area is the Redwood Village neighborhood, located in Redwood City and extending into unincorporated San Mateo County. South and east is the Fair Oaks neighborhood, which is located within an unincorporated portion of San Mateo County. The Friendly Acres neighborhood is located immediately east of the Precise Plan Area. Taft Elementary School is located at the southwest corner of 10th Avenue and Bay Road.

Light industrial and mixed commercial businesses extend west to Woodside Road. Woodside Road contains a concentration of big box retail and other large-footprint office and commercial development, with a recent renovation to Costco near the intersection with Middlefield Road.

Existing Plans and Regulations

General Plan. The Redwood City General Plan designates the Precise Plan Area for “Commercial - Office Professional / Technology” and “Hospital” land uses, as indicated by the General Plan's Land Map which follows. Land use designations in the surrounding area are mixed, including low-, medium-, and high-density residential. The Precise Plan’s permitted land uses are consistent with this designation and a General Plan Amendment will not be required.

Precise Plan Area streets have a range of “Street Typology” and Circulation-related designations. The General Plan designates Broadway as a “Transit Street,” with a “Potential Streetcar Network” loop that includes 2nd Avenue and Bay Road. It designates Bay Road as an “Industrial Street,” and Broadway, Bay, 2nd, and Rollison Road all are designated “Truck Routes.” Broadway, Bay, and 2nd each are designated “Class II or Class III Bike Lane or Route.”

Zoning. One zoning district, “IR - Industrial Restricted,” currently applies to the entire Precise Plan Area, as illustrated by the Zoning Plan which follows. The IR District has a maximum 0.7 floor-area-ratio (FAR), maximum 70% lot coverage, and a 75-foot height limit. Some of the Precise Plan’s permitted uses are inconsistent with this designation, and a Zoning Amendment is required.

Precise Plan Issues & Goals

1. Neighborhood Compatibility – Development of the campus as envisioned is likely to add value to nearby neighborhoods, support local businesses, and promote continued investment in Redwood City as a whole. On the other hand, it would significantly increase the square footage of the campus, accommodating significantly more employees and producing significantly more traffic. The adjacent Friendly Acres, Redwood Village, and North Fair Oaks neighborhoods could expect to be affected as the campus takes shape over time.

The Precise Plan balances the impacts and benefits of campus development with a program of traffic management, pedestrian safety and open space improvements, and development controls. Precise Plan area development will provide a shuttle to and from the Precise Plan area and the Downtown Transit Center. In addition, the City’s General Plan identifies Broadway as a potential streetcar route. Renovation of Broadway and Bay Road as more pedestrian-, bicycle-, and transit-oriented streets is an important objective and is required. Average building heights will be similar to or lower than permitted under current zoning, and lowest adjacent to the Friendly Acres Neighborhood and Spinas Park.

2. The Broadway Corridor – Broadway connects the Precise Plan Area directly to Downtown, and the City’s General Plan focuses on the Broadway and Veterans Boulevard corridors as key locations for future investment in mixed-use development and supporting transit service. The westernmost edge of the campus is approximately 1 mile from the intersection of Broadway and Main Street – a 20-minute walk – and the City-proposed streetcar service would create a strong and convenient link to Downtown’s mix of shops, civic and entertainment destinations, and the Downtown Redwood City multimodal transit station with CalTrain service.

The Precise Plan focuses the public face of the campus on Broadway, so that pedestrians, bicyclists, and transit users regard the street as the gateway to the rest of Redwood City.
Zoning Map
Ideally, new employees in the area will find it convenient to patronize Downtown, and even live there as envisioned by the proposed Downtown Precise Plan. Attractive buildings, sidewalks, lighting, and street trees will line the street, creating an appealing campus image and entrance to the Friendly Acres neighborhood.

3. **Campus Access, Circulation, and Parking** – Broadway is planned to function as the public face and front door to the campus, as noted above, with employee parking facilities located along Bay Road and the US 101 frontages. Ideally, this will maintain capacity on Broadway to serve the adjacent Friendly Acres neighborhood, and accommodate potential future transit service including a potential future streetcar as envisioned by the General Plan for the Broadway / Veterans Boulevard corridor. Because Bay Road links to both Woodside and Marsh Roads, it is planned to accommodate most campus-bound traffic. Shuttle service and potential streetcar service will result in significant reductions in campus-related traffic and parking.

The Precise Plan calls for the extension of Hurlingame, Warrington, and Barron Avenues through the campus between Bay Road and Broadway, continuing the street grid that exists south of the Precise Plan Area. North of Broadway, Warrington Avenue would be a private street with a public access easement, linking SMOC and adjacent properties to the campus center south of Broadway. These extensions will create four blocks where only one exists today, providing more flexible vehicle, bicycle and pedestrian access to campus buildings and parking facilities, and minimizing the need for curb cuts and driveways on Broadway and Bay Road. It will also allow for more flexibility in development phasing, and support a campus that feels like it is a part of, rather than separated from, the surrounding community. Hurlingame Avenue may be a pedestrian paseo if deemed appropriate by the City in future phases.

4. **Building Orientation, Pedestrian Ways, and Open Space** – As the campus develops over time, new buildings will be located and designed to frame streets and open spaces, rather than occupy the center of parking lots. Building façades and building entrances will address on Broadway, with additional entrances and pedestrian-oriented site features on side streets, the greenway, and Bay Road. Sidewalks will be designed to be generous in dimension, with continuous street trees and pedestrian oriented street lighting along all frontages.

A central “greenway” open space, as proposed by the applicant, will extend through the four blocks created south of Broadway. This greenway will unify the campus visually, and accommodate a variety of internal pedestrian routes and open spaces that link buildings to one another, to adjacent city sidewalks, and to supporting parking facilities. It will provide a dramatic visual and environmental amenity for campus employees and a direct link to the open space adjacent to Spinas Park. Courtyards and other small spaces are encouraged along the Greenway to accommodate informal meetings and other employee-related activities.

5. **Architectural Character** – New development is anticipated to occur incrementally, and it is important that a basic architectural character be established so that the campus has a coherent form and appearance. However, technical building requirements and architectural fashions are likely to change over the build-out period, and a rigidly defined approach to architectural design is not considered appropriate. Instead, the Precise Plan establishes guidelines so that buildings are complementary and pedestrian-friendly in scale, and the campus as a whole has a distinctive and attractive image.

A generally contemporary architectural design approach is assumed, and the Precise Plan encourages buildings that incorporate natural light and views but are also warm and inviting. Building entrances will be oriented to public streets and ways, and lower floors will be a focus of design attention. Building step backs and other massing approaches should be employed as needed to maintain sunlight on sidewalks where sunlight on sidewalks is desirable and to create a gracious campus environment.
6. **Environmental Sustainability** – Stanford University is committed to promoting sustainable development principles in all of its campus planning and building efforts. The Precise Plan ensures that this commitment will extend to other tenants and/or developers that may participate in development of the campus in the future. Precise Plan area development will provide shuttle service to the Downtown Transit Center to reduce auto-based trips, and street improvements will not preclude any future Broadway streetcar route as provided for and envisioned in the General Plan. Energy efficiency, and other "green" principles will be fundamental to review and approval of all new development. The proposed Greenway open space combined with the shift from surface to structured parking will increase the amount of permeable area, reducing runoff and promoting natural infiltration of rain water.

7. **Relationship to Downtown and Surrounding Areas** – The campus has an important role to play within the pattern of the city as a whole. As noted above, the site is linked to Downtown by Broadway, and lies at the east end of the Broadway Corridor, which the General Plan designates for infill development and focused transit service, including a possible streetcar line. The campus would anchor one end of one of Downtown’s most important transit corridor “spokes,” the other being SeaPort Boulevard and Middlefield Road. Over time, Broadway and the Stanford campus is envisioned to evolve to become an extension of Downtown’s pedestrian-oriented building and street environment, and the local transit hub for residents and employees in adjacent neighborhood and light industrial areas. To promote this vision, the Precise Plan establishes development and circulation approach that facilitates through movement and extends the benefits of intra-city mobility to the surrounding areas.

The campus abuts US 101, which is the public face of Redwood City for tens of thousands of passersby. The Precise Plan recommends that adjacent buildings and site improvements be designed and oriented to address the freeway to project a positive image for both Stanford University and the City.
Chapter II - Development Standards & Urban Design Guidelines

This chapter establishes policy standards and guidelines for land use, site development, and urban design based on the goals contained in Chapter I. Development Standards are requirements for those aspects of development that are essential to achieve the goals of the Precise Plan. They include specifications for such aspects as permitted uses, building setbacks and parking. The Urban Design Guidelines outlined in this chapter are strongly recommended yet discretionary policies which address more subjective considerations, such as building forms and architectural detailing, and will be reviewed in more detail and considered on a case-by-case basis. They serve as criteria for design review by City staff, Architectural Review Committee, Planning Commission and City Council.

Development Standards

Development Standards are organized in three categories:

I. Land Use & Development
II. Building Height & Setbacks
III. Site Development & Parking

I. Land Use & Development

The type, distribution, and extent of land uses established within the Precise Plan Area are based on the goals contained in Chapter I. The Precise Plan Area is subdivided into seven blocks – A through G— that are defined by existing and proposed streets and ways. Blocks A through D extend from Broadway south to Bay Road and incorporate most of the former Mid-Point Technology campus. Blocks E and F are located north of Broadway; Block E contains the former Ampex Building, Block F contains the Stanford Medical Outpatient Clinics and Block G contains the building and parcel presently owned by Genentech. Land use, development, and urban design policies are organized to reflect this block configuration, as appropriate.

The Plan Area Blocks map on page 13 reflects the fact that Stanford’s medium- and long-term development program has not been established. Near term new development is most likely on Blocks A and B, located across Broadway from the SMOC facility.

A. PERMITTED AND ACCESSORY USES – Permitted uses are consistent with the City’s land use and development policies for the Precise Plan Area. Permitted accessory uses are subordinate to and supportive of permitted campus uses and primarily oriented to campus employees. See section B for allowable amounts of development.

1. Block A – Block A is bounded by Broadway on the north, Bay Road on the south, Spinas Park and Fire Station No. 11 on the east, and extension of Barron Avenue on the west.

a. Permitted Uses

 1. Administrative, Business, and Professional Offices
 2. Medical Professional Offices and Clinics
 3. Research and Development Facilities
 4. Public Open Space and Recreation Facilities
 5. Laboratory Facilities

b. Accessory Uses

 1. Child Care Facilities
 2. Cafeterias
 3. Small scale commercial, retail, service, grocery, sundries, and other similar uses
 4. Small scale education facilities
 5. Health/fitness center

2. Blocks B, C, and D – Block B is bounded by Broadway on the north, Bay Road on the south, extension of Barron Avenue on the east, and extension of Warrington Avenue on the west. Block C is bounded by Broadway on the north,
Bay Road on the south, extension of Warrington Avenue on the east, and extension of Hurlingame Avenue on the west. Block D is bounded by Broadway on the north, Bay Road on the south, extension of Hurlingame Avenue on the east, and Douglas Avenue on the west.

a. Permitted Uses
 1. Administrative, Business and Professional Offices
 2. Medical Professional Offices and Clinics
 3. Research and Development Facilities
 4. Freestanding Parking Structures
 5. Laboratory Facilities

b. Accessory Uses
 1. Child Care Facilities
 2. Cafeterias
 3. Small scale commercial, grocery, sundries, and other similar uses
 4. Small scale education facilities
 5. Health/fitness center

3. Block E – is bounded by US 101 on the north, Broadway on the south, extension of Warrington Avenue on the east, and Douglas Avenue on the west. It excludes the Genentech property, which comprises Block G.

a. Permitted Uses
 1. Administrative, Business and Professional Offices
 2. Medical Professional Offices and Clinics
 3. Research and Development Facilities
 4. Freestanding Parking Structures
 5. Laboratory Facilities

b. Accessory Uses
 1. Cafeterias

2. Small scale commercial, grocery, sundries, and other similar uses
3. Small scale education facilities
4. Health/fitness center

c. Conditional Uses
 1. Hotel
 2. Commercial Retail

4. Block F – is bounded by US 101 on the north, Broadway on the south, Rolison Road on the east, and extension of Warrington Avenue on the west. Uses designated for Block F and/or expansion of existing uses not evaluated in the Stanford in Redwood City Campus Precise Plan EIR may require additional CEQA review.

a. Permitted Uses
 1. Research and Development Facilities
 2. Laboratory Facilities
 3. Warehouses
 4. Public Open Space, such as mini-parks

b. Accessory Uses
 1. Child care facilities
 2. Cafeterias
 3. Small scale commercial, grocery, sundries, and other similar uses
 4. Small scale education facilities
 5. Health/fitness center

2. Small scale commercial, grocery, sundries, and other similar uses
3. Small scale education facilities
4. Health/fitness center

c. Conditional Uses
 1. Administrative, Business and Professional Offices
 2. Medical Professional Offices and Clinics
 3. Hospital
 4. Hotel
 5. Commercial Retail
5. **Block G** – is comprised of the Genentech site located on Broadway adjacent to Douglas Avenue. Uses proposed on Block G and/or expansion of existing uses not evaluated in the Stanford in Redwood City Campus Precise Plan EIR may require additional CEQA review.

 a. **Permitted Uses**
 1. Research and Development Facilities
 2. Laboratory Facilities
 3. Electrical Equipment Facilities
 4. Warehouses
 5. Public Open Space, such as mini-parks

 b. **Accessory Uses**
 1. Child care facilities
 2. Cafeterias
 3. Small scale commercial, grocery, sundries, and other similar uses
 4. Small scale education facilities
 5. Health/fitness center

 c. **Conditional Uses**
 1. Administrative, Business and Professional Offices
 2. Medical Professional Offices and Clinics
 3. Hotel
 4. Commercial Retail

B. **DEVELOPMENT AMOUNT AND INTENSITY** – Standards listed below are for occupied space only; i.e. parking structures are additional to maximums. Development amount is measured in terms of gross square feet of building area per City of Redwood City Ordinance section 11.30. This includes all roofed building area, including hallways, lobbies, elevator cores, and other support areas; covered at-grade arcades, walkways, shade pavilions, and other landscape or open space-related structures are not considered to be building area. Development intensity is measured in terms of floor-area-ratio (FAR), which is the ratio of gross building area to land area.

1. **New/Replacement Space** – Development on Blocks A through E of the Stanford in Redwood City Campus Precise Plan shall not exceed 1,518,000 square feet of building space. Final buildout is assumed to contain land uses in the proportions listed below; land uses that exceed these amounts may require additional CEQA review.

 a. Administrative, Business, and Professional Offices, and non-Laboratory R&D Facilities – 65% to 100% of total allowable buildout.

 b. Medical Professional Offices and Clinics – up to 20% of total allowable buildout.

 c. Research and Development Laboratory Facilities – up to 15% of total allowable buildout.

2. **Overall Development Intensity** – The development intensity for the Precise Plan area shall not exceed a gross floor area-ratio (FAR) of 1.0, consistent with the policies of the General Plan. The FAR calculation for Precise Plan Blocks A through E area shall be based on the 34.85 acres of developable land area that existed at the time the Precise Plan was adopted; i.e., the developable land area prior to establishment of new streets, land dedications, etc., per the policies of the Precise Plan.

3. **Block FARs** - Street and potential open space dedications, public access easements, or allocation requirements reduce the amount of developable land in the Precise Plan Area, resulting in higher net FARs on individual blocks. The Precise Plan focuses these higher FARs on the west side of the Precise Plan Area, away from the Friendly Acres neighborhood, and on the north adjacent to US 101. The maximum net FAR for each block is listed below. Given the Precise Plan Area's maximum 1.0 FAR and maximum build-out requirements, it is not possible for all blocks to be built to their maximum net FAR. Block FARs shall be based on the
land areas remaining after new street rights-of-way per the Precise Plan.

a. Block A FAR - 1.0
b. Block B FAR - 1.25
c. Block C FAR - 1.50
d. Block D FAR - 1.50
e. Block E FAR - 1.75
f. Block F FAR - 1.0
g. Block G FAR - 1.0

C. OPEN SPACE ADJACENT TO SPINAS PARK – As part of a development agreement, the applicant has proposed to provide approximately 2.4 acres in Block A for open space purposes adjacent to Spinas Park.

II. Building Height & Setbacks

A. BUILDING HEIGHT POLICY APPROACH - It is the intention of the Precise Plan that buildings average from 60 and 75 feet in height, or from 4 to 5 stories. However, the Plan’s building height standards provide for variety and flexibility, with different maximum building heights established for different blocks. Maximum building heights are lowest adjacent to the Friendly Acres neighborhood, and highest adjacent to US 101.

B. BUILDING HEIGHT MEASUREMENT - Building height is defined as the average vertical distance measured from proposed grade to the top of building wall, base of parapet, and/or eave line. Pitched, domed, and/or other special architectural roof forms are recommended and may qualify for a height exception; see C., “Maximum Height Exceptions.”

C. BLOCK BUILDING HEIGHTS – Maximum building height for each block is listed below. Variations in heights reflect policies for lower levels of development on the east side of the Precise Plan Area, adjacent to the Friendly Acres neighborhood, and higher levels of development on the west and north sides adjacent to US 101. Given the Precise Plan’s average building height, FAR, and maximum build-out requirements, however, it is not possible for all buildings to be built to height maximums.

1. Block A - 60 feet (Typically 4 stories)
2. Block B - 75 feet (Typically 5 stories)
3. Block C - 75 feet (Typically 5 stories)
4. Block D - 75 feet (Typically 5 stories)
5. Block E - 120 feet (Typically 8 stories)
6. Block F - 60 feet (Typically 4 stories)
7. Block G - 75 feet (Typically 5 stories)

C. MAXIMUM HEIGHT EXCEPTIONS - may be approved for the following:

1. Above Subsurface Parking - The maximum building height may be exceeded by up to 5 feet where subsurface parking is provided; subsurface structures shall extend no higher than 5 feet above finished grade.

2. Special Architectural Forms - Special architectural forms such as towers, atria and other features are encouraged and may be permitted to exceed height limits subject to City review.

3. Rooftop Mechanical Equipment - May extend up to 15 feet above the maximum building height standard provided equipment is screened per E., below, and is set back at least 10 feet from the building edge.

4. Blocks B, C, and E - One building on each of these centrally located blocks may be allowed to exceed height limits by up to a maximum of two additional stories, subject to City review and approval.
The gross maximum FAR for the Precise Plan Area is 1.0. However, street and open space dedication requirements reduce the amount of developable land, creating higher net FARs on individual blocks. The Precise Plan focuses higher FARs on the blocks to the west, away from the Friendly Acres neighborhood, and on the north, adjacent to US 101. This provides for variety and flexibility in development. However, given the Precise Plan’s gross maximum FAR and maximum build-out requirements, it is not possible for all blocks to be built to their respective maximum net FAR; i.e., developing some blocks to the maximum net FAR requires that other blocks be developed at less than the maximum net FAR.

Variations in height maximums reflect Precise Plan policies for lower levels of development on the east side of the Precise Plan Area, adjacent to the Friendly Acres neighborhood, and higher levels of development on the west and north adjacent to US 101. The height limits establish a maximum envelope for individual buildings. However, given the Precise Plan’s average building height, FAR, and maximum build-out policies, it is not possible for all buildings to be built to the maximum height; i.e., developing some buildings to the maximum height requires that other buildings be developed at less than the maximum height.

* See Section II: Building Height and Setback.

Maximum Development Intensity & Building Height
5. **Flood Clearance** – The maximum building height may be exceeded by up to 5 feet if needed to elevate the first floor above the 100-year flood elevation.

D. **MINIMUM BUILDING HEIGHT** - A minimum height of 25 feet is required along street frontages in all Plan Areas. Accessory buildings may be less than 25' in height; examples include concession stands, rest rooms, and storage buildings.

E. **ROOFTOP MECHANICAL EQUIPMENT** – Rooftop mechanical equipment shall be screened from view from surrounding streets and properties by a parapet, segment of pitched roof, or enclosure consistent with and complementary to the architectural style and materials of the principal building.

F. **FRONT/STREET SETBACKS** - A gracious campus character is desired for the Precise Plan area, and buildings should be located near streets to encourage pedestrian activity and to frame streets as public spaces. Minimum/build-to setbacks indicated below are intended to reinforce this character. Maximum setbacks are intended to allow segments of façades to be recessed from the frontage for entrance courts, variations in building mass, and other design approaches that add visual interest. Setbacks are illustrated on pages 47-55.

1. **Broadway** – Broadway is planned as the public face of the campus and a transit corridor. Setbacks are established to accommodate possible future improvements, including a future streetcar, as well as existing buildings anticipated to remain. North frontage shall have 20-foot minimum setback/build-to line, 30-foot maximum setback. South frontage shall have 30-foot minimum setback/build-to line, 40-foot maximum setback. Parking structures are not permitted along Broadway.

2. **Bay Road, Douglas Avenue** – Occupied building setback shall be 12-foot minimum, 20-foot maximum. Back of curb area shall consist of an 8-foot street tree/landscape area, 8-foot sidewalk, and 4-foot planter area. Parking structure setback shall be 22-foot minimum; back of curb area shall consist of 16-foot sidewalk as well as a 14-foot planting/screen area.

3. **Warrington Avenue** – is planned as a pedestrian-oriented campus gateway street. Occupied building setback from new ROW shall be 6-foot minimum, 16-foot maximum. Back of curb area shall consist of 12-foot sidewalk and 6-foot minimum landscape area. Parking structures are permitted to front only one side of Warrington; see graphic on page 51.

4. **Hurlingame Avenue, Barron Avenue** - Occupied building setback from new ROW shall be 0-foot minimum, 10-foot maximum. Back of curb area shall consist of 12-foot sidewalk. Parking structure setback shall be 20-foot minimum; back of curb area shall consist of 12-foot sidewalk and 8-foot planting/screen area.
Chapter II - Development Standards & Urban Design Guidelines

J. SETBACK ADJACENT TO US 101 – A minimum parking lot setback of 10 feet from the highway right-of-way shall be provided to accommodate a campus edge BUFFER landscaping.

III. Site Development & Parking

A. SEQUENCE OF DEVELOPMENT – Build-out of the campus could occur in a variety of ways, from block-by-block to all-at-one-time. The Precise Plan assumes that development would be likely to occur in one- to two-block increments. Each phase of development shall provide at least a related and proportional share of associated capital improvements, such as street and intersection improvements, utilities, open space, etc.; see Chapter IV, Implementation. A phasing plan shall accompany each development application(s).

1. Initial Phase Development - New development totaling 10% or more of planned new/replacement space shall provide open space land adjacent to Spinas Park and access to adjacent parking areas.

2. Block and Street Phasing – New development in the project area will require frontage improvements and roadway extensions that proportionally correspond to the new development being proposed. Roadway extensions are defined as the curb to curb roadway improvement for roadway sections as specified in the Stanford in Redwood City Precise Plan. These extensions shall be public streets between Bay and Broadway. Warrington north of Broadway is planned as a private drive with public access. Frontage improvements are defined as the sidewalk and related improvements and infrastructure behind the roadway curb and underground utilities (in street).

Any new development in each of Blocks A-E requires roadway extensions as follows:

- Block A - Barron
- Block B - Barron
- Block C - Warrington

G. INTERIOR SIDE AND REAR SETBACKS - Minimum building setback from adjacent/internal property line(s) shall be 20 feet.

H. SPACE BETWEEN BUILDINGS - To allow adequate space for light, air, and pedestrian ways minimum space between unattached campus buildings, including parking structures, shall be 40 feet. Buildings should be set back from each other a minimum of 40 feet wall-to-wall (60 feet preferred) to allow adequate space for light, air and emergency vehicle and pedestrian circulation at grade.

I. SETBACK ADJACENT TO SPINAS PARK/FIRE STATION NO. 11 – A minimum building setback of 50 feet shall be required along the eastern boundary of Block A.
Block D - Hurlingame
Block E - North Warrington

Improvements will be required along the entire block frontage of roadways adjacent to new development.

3. **Development Phasing Plan** - Individual development phases shall be able to stand alone aesthetically and functionally, including the provision of adequate parking by phase, if subsequent phases are not developed. The developer/applicant shall submit a development phasing plan for City approval, consistent with Precise Plan objectives and policies, with each “P” Permit submittal.

The Phasing Plan shall indicate the total number of remaining development phases proposed, and where, when, and how much development and Greenway improvement is anticipated to be proposed in each phase consistent with Precise Plan policies. An initial Development Phasing Plan shall accompany the initial phase PC Permit application, and will be revised or modified in subsequent applications.

B. **MAXIMUM BUILDING COVERAGE** – Maximum building coverage for individual Blocks A through F shall be 55%. Maximum coverage for Block G shall be 75% for electrical equipment facilities and 55% for all other structures. (Note: A portion of Block A is designated for open space, and given Precise Plan standards related to Maximum Building Footprint, below, Block A will have a building coverage significantly less than 55%.)

C. **MAXIMUM BUILDING FOOTPRINT** – The maximum footprint for a single building (occupied or parking structure) shall be 55,000 square feet. This will help ensure that a gracious, pedestrian-scale campus with generous open space area(s) and well-scaled space between buildings is created.

1. **Maximum Building Dimension** - shall be no greater than 250 feet along the Broadway and Bay Road frontages, and no greater than 300 feet along side streets; building plane shall be set back a minimum of 20 feet for building frontages longer than 200 feet.

2. **Building Mass Breaks** – Building mass shall be recessed, projected, notched, or otherwise broken at intervals of 100 feet or less along street and Greenway frontages. Recessed, projected or otherwise broken areas should be a minimum of 6 feet measured between building planes.

D. **BUILDING ORIENTATION AND ENTRANCES** – Attractive building entrances shall be provided and located on a streetfronting building façade or fronting building corner. Ground level building entrances/exits shall be located at regular intervals along streets and ways to encourage pedestrian activity and to promote campus supervision and security. Entrances to lobbies, retail and/or other supporting spaces, etc., shall be located at intervals of 100 feet or less along streets and ways.

E. **ACCESSIBLE STREETS AND PEDESTRIAN WAYS** – All public streets, sidewalks and private streets with public access easements within the Precise Plan Area shall be and remain publicly accessible. The intent of the Greenway is to create landscaped pathways available to the general public during normal business hours. The Greenway areas will remain in private ownership, and the property owner(s) reserve the right to secure and/or limit access to portions of their property if they deem it necessary; however, the Greenway shall remain visible from adjacent streets. Through-access along the Greenway area shall be provided to employees and authorized visitors during working hours.

F. **NEW STREET RIGHTS-OF-WAY (ROW)** – Hurlingame, Warrington, and Barron Avenues shall be extended as noted in the Precise Plan. ROW shall be dedicated to the City for this purpose as follows:

1. **Hurlingame and Warrington Avenues** – Right-of-way shall be 62 feet, as needed to accommodate 12-foot minimum sidewalks, two travel lanes, parallel parking, and clear turn area at intersections.
Chapter II - Development Standards & Urban Design Guidelines

Initial Phase Development: Improvement of adjacent street extension required for new development. New development totaling 10% or more of planned new/replacement space shall provide open space land adjacent to Spinas Park.

New Development in blocks A, B, C, D, or E: Dedication and improvement of adjacent street extension required, per City direction. Interim uses such as landscaped areas or surface lots on sites banked for later phases of development. New buildings located on Broadway.

Build-out of any block: Greenway required.

Full build-out: All dedications and improvements made.

- This is one of a number of potential scenarios for the sequence of development.
- New development in the project area will require frontage improvements and roadway extensions that proportionally correspond to the new development being proposed. Any new development in each of Blocks A-B requires roadway extensions as follows: Block A - Barron; Block B - Barron; Block C - Warrington; Block D - Hurlingame; Block E - North Warrington. Frontage improvements will be required along roadways where adjacent to new development.

Potential Development Sequence
2. Barron Avenue - Right-of-way shall be 84 feet, as needed to accommodate 12-foot minimum sidewalks, two travel lanes, angle parking, and clear turn area at intersections. On-street angle parking is intended to serve the required open space area and Block A development.

G. STREET FRONTAGE IMPROVEMENTS – Frontage improvements shall be provided to create attractive, pedestrian-oriented streets.

1. Broadway – Broadway is planned as the public face of the campus entrance and a transit corridor. Back of curb area shall include street trees, minimum ten-foot sidewalk, and back of walk planting area. Parking structures are not permitted along Broadway. One of two potential roadway configurations are anticipated by the Precise Plan, and will need to be finalized by the City prior to installation of frontage improvements:

 a. Curbside Parking – If curbside parking is established along the frontage, improvements would include a 19.5-foot sidewalk; see diagram on page 47.
 b. Bike Lane – If a bike lane rather than curbside parking is established along the frontage, improvements would include the existing curbside landscape area and 8-foot sidewalk.

2. Bay Road, Douglas Avenue – Back of curb area shall consist of a 12-foot sidewalk and 8-foot street tree and landscape area, and 4-foot planter area; 8-foot sidewalk and 14-foot planting/screen area at parking structures.

3. Warrington Avenue – Warrington is planned as a pedestrian-oriented campus gateway street. Back of curb area shall consist of 12-foot sidewalk, street trees, and 6-foot planter area.

4. Hurlingame Avenue, Barron Avenue - Back of curb area shall consist of 12-foot sidewalk, street trees; 8-foot planting/screen area at parking structures.

5. Street Lighting - Attractive, pedestrian-scale streetlights shall be provided along all street frontages at approximately 80 feet on center. Specific fixture types, locations, and illumination requirements shall be as directed by the City.

6. Street Trees – Deciduous shade trees shall be planted along all street frontages at a maximum of 40 feet on center; a closer spacing is recommended. Trees shall be minimum 36-inch box, 3-inch caliper size. Tree wells shall be minimum 24 square feet in area, with 36 square feet recommended.

H. PARKING REQUIREMENTS – Parking shall be provided according to the standards listed below, unless otherwise reviewed and approved by the City. Supporting transit use, employing transportation demand management (TDM) strategies, and other efforts to reduce vehicle travel and associated parking are required.

1. Administrative, Business and Professional Offices, and Research and Development – 3 stalls per 1,000 square feet of gross floor area.

2. Medical Professional Offices and Clinics - 5 stalls per 1,000 square feet of gross floor area unless otherwise reviewed and approved by the City.

3. Other Uses – per City of Redwood City Zoning Ordinance.

J. PARKING FACILITIES - Parking facilities may consist of subsurface garages, freestanding structures, or surface parking lots. Surface lots shall be considered interim facilities for Blocks A through D, with the ul-
timate build-out configuration consisting of structures and/or subsurface garages. Parking structures shall not be developed along Broadway.

1. **Subsurface Parking Garages** – Partially and/or completely below-grade parking garages are recommended but not required. Garage entrances shall be designed in an architecturally attractive fashion, with lighting and landscaping as needed to mitigate blank walls, dark openings, long ramps, etc. Garages may extend up to 5 feet above grade to provide for daylight and natural ventilation.

2. **Freestanding Parking Structures** - Parking structures shall be designed to visually defer to and complement adjacent buildings. The following standards apply:

 a. **Height** - Maximum height shall be 65 feet or 6 levels for blocks B, C, D, E, and G; maximum shall be 55 feet or 5 levels for Block F. Parking levels should be submerged if more than 6 parking levels are required.

 b. **Length** - Maximum shall be 250 feet along Bay Road and 275 feet along side streets.

 c. **First Level Façades** - shall incorporate a high level of architectural design and detailing to support pedestrian activity.

 d. **Along Barron Avenue** – A portion of the first floor along the west frontage of Barron Avenue shall be programmed to complement the potential open space area adjacent to Spinas Park. This use may be incorporated within a parking structure or in a “veneer” structure constructed adjacent to the parking structure.

 e. **Architectural Design** – shall complement adjacent buildings in form, materials, and detailing; see Urban Design Guidelines for additional recommendations.

3. **New Surface Parking Lots** – may be allowed as part of buildout plans for Blocks E, F, and G. The lot in Block E shall be located above the existing utility easement. A small shared surface parking area may be considered adjacent to Spinas Park. Interim-phase surface lots would be permitted.

 a. **Size and Character** - New individual lots should not exceed 400 stalls. Lots shall be designed as parking courts or parking streets, with frontage sidewalks, frontage light standards, internal landscape and/or plaza islands, and other features that define them as public spaces as well as utilitarian facilities.

 b. **Location** - Lots shall be located to the side and/or rear of buildings and set back from streets and pedestrian ways.

 c. **Frontage Screening** - The perimeter of new surface lots along streets and pedestrian ways shall be screened with an ornamental wall or decorative metal fence between 30 inches and 42 inches in height. Height and design of walls and fences are subject to City review; safe sight distances between streets and driveways shall be maintained.

 d. **Trees** - Lots shall be planted with shading trees at a minimum ratio of 1 tree for every 3 parking stalls. “Orchard” and/or other non-typical tree layouts shall be employed as feasible to maximize screening from adjacent buildings and properties. Tree plantings shall be designed in such a way that trees may be removed and relocated when parking areas are redeveloped.

4. **Block B Parking** – A portion of the Block B parking structure may be set aside as shared parking for Spinas Park subject to review and approval by both Stanford and the City.

J. **BICYCLE PARKING** - Bicycle parking facilities shall be provided for employees and visitors at a ratio of 1 bicycle per 10 required vehicle stalls. Bicycle parking may be provided within a locked corral, individual bike lockers, freestanding racks, and/or combination of facilities per City approval. Such facili-
ties shall be provided in unobtrusive areas and/or incorporated into the design of buildings and site improvements.

K. COMMON CAMPUS OUTDOOR SPACE - Two types of usable outdoor space shall be provided within the campus: a central campus green or plaza, and smaller outdoor seating areas associated with individual office, medical, and R&D buildings.

1. Central Campus Greenway - A central open space spanning Blocks A through D shall be established, with a minimum net area of 5 acres. The Greenway shall have an average width of 100 feet, but be no narrower than 75 feet. See Urban Design Guidelines for detailed design recommendations.

2. Building Courtyard Open Spaces - A minimum area equal to 5% of gross floor area for buildings of 40,000 square feet or more shall be provided for outdoor sitting, sunning, and lunch areas directly associated with the adjacent buildings; see Urban Design Guidelines for design recommendations.

L. COMMON OUTDOOR WALKWAYS - On-site outdoor pedestrian walkways shall be a minimum of 6' and a maximum of 14' in width. Walkways shall appear as an extension of adjacent street sidewalks through use of similar design, materials, lighting, and other elements.

M. SERVICE AREAS - Service areas and related materials, equipment, supplies, etc., shall be screened from view from the ground level of adjacent properties, streets, and pedestrian ways. Whenever feasible, loading docks, service bays, and mechanical facilities should be internal to buildings with bay doors that can be closed when facilities are not in use. If such areas and/or facilities must be located outside of the building, they shall be contained within attractively designed exterior enclosures. Service access ways and service bays shall be centralized between adjacent buildings wherever feasible to minimize impacts on adjacent streets and the Greenway. Service access shall be depicted on the Development Phasing Plan(s).

1. Exterior Enclosures - shall reflect the architectural form and materials of principal buildings and should be enhanced with vines and/or other landscape materials appropriate for the location, and screened from views from above by roofs or canopies. Height shall be 10 feet or appropriate to the context of what is needed to be screened.

N. SITE UTILITIES AND MECHANICAL EQUIPMENT - Above grade utilities and mechanical equipment, such as backflow preventers, electrical cabinets, etc., shall be located away from sidewalks and other pedestrian areas. Utilities and equipment shall be screened from view by landscaping, screen walls, and/ or equipment enclosures painted to blend with the landscape. Where feasible, equipment shall be located in below-grade utility boxes.

O. OVERHEAD UTILITY LINES - Existing above-ground PG+E utility lines and others shall be placed underground per City requirements along Broadway, Bay Road and Douglas Avenue as development occurs. Minimum length of undergrounding segment shall be one block.
Utilities and equipment shall be screened from view by landscaping, screen walls, and/or equipment enclosures painted to blend with the landscape.

P. PRIVATE STREETS – If approved by the City, Hurlingame Avenue may be considered for designation as a private street in order to incorporate innovative, pedestrian oriented design to make the street space attractive and accommodating for pedestrian activity. A public easement is likely to be required.

Q. SITE GRADING AND FIRST FLOOR BUILDING ELEVATIONS
Grading within the Precise Plan area shall be generally level, consistent with the local topography and the pedestrian-oriented campus environment envisioned for the site. First floor building elevations shall be a generally consistent height above grade, so that the campus has a unified appearance as seen from surrounding streets and the Greenway, and consistent with other Precise Plan development standards and design guidelines. Grading and first floor building elevations shall be coordinated as part of the Development Phasing Plan(s).
Urban Design Guidelines

Guidelines are organized in five categories:

I. Development Phasing
II. Building Orientation and Design
III. Pedestrian Ways & Open Spaces
IV. Streets and Streetscapes
V. Site and Landscape Improvements

Plan diagrams on the following pages illustrate guidelines for the Precise Plan area. The “Urban Design Concept” plan summarizes streetscape and building orientation guidelines. The “Concept Development Illustration” shows possible footprints for future buildings consistent with Precise Plan policies and guidelines. The “Phasing Concept” diagram illustrates phasing guidelines.

I. Development Phasing

The campus will likely be constructed in a series of phases over many years. Medium- and long-term development is difficult to anticipate, and the phasing of campus buildings and parking structures will depend largely upon the program needs at each stage. The City of Redwood City will work to accommodate a sequence of development that ensures the efficient functioning of campus buildings and facilities consistent with the policies of the Precise Plan.

A. PHASE COMPLETION – Individual phases should be functionally and aesthetically self-sufficient when completed, and allow for the efficient occupancy and functioning of remaining Precise Plan Area buildings, parking lots, and infrastructure.

B. ORIENTATION OF DEVELOPMENT – The campus’s most pedestrian-oriented administrative/office buildings should be located along Broadway. Buildings and facilities that have lower levels of pedestrian activity should be located along Bay Road, with adjacent land reserved for future structure parking per Precise Plan’s standards and guidelines, and land along Broadway reserved for offices.

C. GREENWAY SEGMENTS – The Greenway is a major element of the Precise Plan development concept, and segments should be completed as individual development phases proceed. In general, these segments should be completed if development of an individual block exceeds 1/2 the permitted FAR; e.g., if the Broadway frontage is completed, and/or construction of parking structures is required.

II. Building Orientation & Design

A. BUILDING ORIENTATION

1. Street Orientation - Buildings along streets and open spaces will create a public face for the campus, and they should provide highly visible and attractive entrances and building façades. Buildings and main building entrances should parallel street rights-of-way to frame streets as public spaces.

2. Corner Buildings - Corner buildings should have corner entrances and/or attractive architectural features to highlight intersections as public spaces. Architectural forms should highlight/emphasize the importance of corners. Corner sites offer an opportunity to maximize views and day lighting, and fenestration and building massing should be designed with this in mind.

3. Multiple Building Arrangements to Shape Open Space – Buildings should be arranged to shape distinct and memorable open spaces, and, where appropriate, to maximize southern exposure and natural light. Squares, malls, crescents and other clearly defined spaces are recommended for larger open space areas. Courtyards, paseos and gardens are recommended for smaller open space areas. Building massing, special building forms, unique architectural elements, materials, colors, and all site features such as landmarks, site art and water features should be used to accent spaces by reinforcing campus edges, framing build-
Buildings should be arranged to shape distinct and memorable open spaces.

Buildings should be arranged to form a network of inviting open spaces and courtyards of different scales, uses, and character.

Building entrances and windows should be located on campus open spaces for ease of access, supervision, natural light, and to encourage outdoor activity.

...ing entrances, terminating views and highlighting focal points. Clearly delineated building volumes contribute to the formation of campus circulation routes and cohesive open spaces.

4. **Relationship to Campus Open Spaces** - Buildings and open spaces should be linked physically and visually to provide an integrated campus environment. Buildings should be arranged to form a network of inviting open spaces and courtyards of different scales, uses, and character. Building entrances and windows should be located on campus open spaces for ease of access, supervision, natural light, and to encourage outdoor activity.

5. **Natural Light and Ventilation** - Buildings should be configured to incorporate the use of natural light and natural ventilation where appropriate. Floors should generally be 120 feet or less in width.

6. **Buildings along the Greenway** - Heights, massing and materials should vary to create a more informal edge along the Greenway than that established along the Campus's perimeter streets. A high degree of visual transparency is desirable, with visual connection between building activities and adjacent open space(s).

7. **Buildings along Bay Road** - The massing and/or façade design of buildings and parking structures along the north frontage of Bay Road should vary in increments of 50' to 60' to complement the small-scale pattern of parcelization and development that exists along the south.

B. BUILDING FORM AND MATERIALS - The Design Guidelines promote campus buildings that are complementary, while allowing for a variety of specific architectural solutions. While no particular architectural style is prescribed, the building character should respect neighborhood context, with design forms and materials that relate to adjacent residential and industrial districts and that are contemporary in style.
1. **Complementary Building Forms** - Campus buildings should be complementary in terms of massing, form, composition, color, materials, fenestration, rooflines, and other architectural features.

2. **First Phase Buildings** - The first new campus buildings should establish a quality baseline for subsequent campus buildings in terms of urban design/building orientation, and streetscape and frontage improvements. The first new buildings should have an architectural character that will complement future campus buildings.

3. **Façade Composition** - Building façades should be composed of more than a single architectural approach; i.e., continuous undifferentiated glass and/or other similar wall designs are not recommended. Different surface materials, massing, and/or other approaches should be used to accent the composition. A variety of architectural expressions are possible within this approach.

4. **Façade Surface Relief** - Building façades should exhibit a strong three-dimensional quality through the use of recessed wall surfaces, punched openings, terraces and arcades and/or projecting window bays, sunshades, canopies, eaves and other architectural forms, particularly along highly visible frontages and important pedestrian routes.

5. **Massing** - Campus buildings should exhibit massing approaches that respond to program and site context; for example, massing should vary to accent main building entrances, building corners adjacent to street intersections, and/or open space axes. Massing step backs and massing changes should be used to create visual and architectural variety along streets and the Greenway.

6. **Variation in Building Heights** - Heights of individual campus buildings should vary to create a visually interesting overall campus composition, and an interesting and attractive skyline. Building heights should respond to on- and off-site views, and minimize shadow effects on adjacent...
Campus buildings should exhibit massing approaches that respond to program and site context.

Buildings and public spaces. Building heights and massing should be composed to create attractive and varied building forms, and to provide for a variety of interior and exterior sun/shade conditions.

7. **Building Base** - Buildings should encourage pedestrian activity by providing a human scale and creating visual interest at the pedestrian level. Transparency, active program uses, and high quality cladding materials shall be employed. Cladding should be durable, aesthetically appealing, and give character and human scale with texture and detail, especially along highly visible frontages and/or important pedestrian ways. Smooth, graffiti-resistant surfaces are preferred. Covered walkways and arcades can further enhance the way buildings meet the ground and provide cover from the elements.

8. **Building Entrances** - Building entrances should be prominently located, clearly articulated, and scaled to the street and open space area they face. Multiple entries to buildings are recommended. Building entrances should be located along Broadway, Bay Street, and Douglas Street and along open spaces and side streets. All Broadway frontage buildings should have a prominent main entrance on the front façade, a frontage building corner, or a Broadway-facing plaza.

Main building entrances should give direct access to building lobbies and vertical circulation elements. Entrances should generally be glazed, offering transparency to and from the outdoors and have access ramps that are integrated into the overall design when required. To provide cover from the elements, entrances can be recessed, covered by a canopy, project, or be part of a system of arcades and covered walkways. Primary entrances should be prominent and easy to identify. Examples of design approaches include:

a. A taller building mass above, such as a tower, and or/a volume that projects or is recessed;
b. Entrance in the center of the façade as part of symmetrical composition;

c. Entrance accented by architectural features, such as columns, canopy, and/or lighting fixtures;

d. A change in the roofline or roof type above.

9. **Side and Rear Building Façades** - should have a level of trim and finish compatible with the front façade, particularly if they are visible from adjacent streets, parking areas or residential buildings.

10. **Blank Walls** - Blank, windowless walls should not be created along street frontages. If wall segments without windows are essential to internal building functions, walls should be designed with recesses, different surface material(s), and/or other approaches that complement the landscaping at blank walls – i.e., vines and/or other plant materials that do not create security concerns – should be considered.

11. **Glass Walls** – All-glass buildings are not recommended. However, limited expanses of glass may be appropriate for solar access at special publicly-accessible areas, such as lobbies, atria, and/or indoor gardens.

12. **Wall Surface Materials** - Building wall materials and colors will make a strong visual contribution to the image and identity of the campus. Colors and materials should reinforce a cohesive image for the buildings while allowing for variety within overall building design and composition.

Use of transparent building materials is encouraged in areas with high pedestrian activity.

Entrances should generally be glazed, offering transparency to and from the outdoors.
A base palette of materials should be used for the campus that includes all cladding systems: solid surfaces, glazing, storefront, louvers, decorative and accent materials. Warm, earth tones in various degrees of saturation should be used for building materials and colors. Accent materials and colors can be a combination of compatible warm and cool tones.

a. **Recommended Building Materials**

- natural stone
- terra cotta tile rainscreen
- cast-in-place concrete
- pre-cast concrete panels
- GFRC (glass fiber reinforced concrete) panels
- brick
- glass curtain wall (in limited applications)
- metal panels
- ceramic tile
- channel glass
- wood panels
- cement plaster

b. **Materials Not Recommended**

- reflective glass
- EIFS (exterior insulation finishing system)
- wood shingles, clapboard, or T-150 siding

13. **Windows** - are an important element of building composition and an indicator of building quality. A variety of window and opening types are encouraged. Horizontal and vertical bands, punched openings with vertical or horizontal expression, and the juxtaposition of punched openings and glass curtain wall are all acceptable.

a. **Composition** - All windows within a building, large or small, should be complementary in operating type, proportions, and/or trim. Unifying architectural ele-
A variety of window and opening types are encouraged.

ments such as common sill or header lines should be employed.

b. Window Openings - Window openings should be appropriate to the internal program use and should generally be vertical (higher than wide) in orientation. Horizontal windows should have mullions that form a vertical pattern.

c. Framing and Window Inset - Sills and trim should be used to frame openings. Glass should be inset a minimum of 2 inches from exterior wall and/or frame surface to add relief.

d. Mullions and Muntins - Mullions and muntins are recommended to create multi-pane windows that provide a human scale and interest. The scale of the multi-pane pattern should be appropriate to the scale of the window opening and relate to the overall building elevation design. Multi-pane windows are recommended for highly visible locations such as main building entrances, first floor windows, and projecting building masses that incorporate window bays, atria, stair enclosures, etc.

e. Glazing - Reflective glazing should not be used. If tinted glazing is used, the tint should be kept light; green, and grey, are recommended.

14. Roofs - should be integrated with the overall façade composition approach to create a coherent building character. Buildings can have flat or shaped roofs, broad solid or perforated eaves, or a simply detailed parapet. Roof forms should be used to mark a primary entrance and other important features.

a. Materials - Roofs should use non-reflective, low intensity colors and avoid dark materials to minimize heat island effect. Green roofs are also encouraged to minimize heat island effect and to improve stormwater management.

b. Screening of Rooftop Equipment - Enclosures and penthouses should be used to screen mechanical units and generally should be set back from the parapet. Mechanical equipment enclosures, mechanical and elevator penthouses, exit stair enclosures and other roofscape elements should be considered as sculptural forms that can add to the overall composition and visual interest of the building when viewed from a distance. Materials for mechanical equipment enclosures, including lightweight metal panels, should be consistent with other building cladding.

c. Rooftop Terraces - should be considered to provide accessible open space for employees.

d. Solar Panels - and/or other green energy features are encouraged. These should be integrated with and/or complement the form of the building.
15. Sustainable design principles – Sustainable design principles should be integrated with other design criteria to guide environmental responses such as inset windows, recesses, overhangs, high-performance glazing, integrated, projecting sunshades, white roofs, solar panels, and operable windows.

C. PARKING STRUCTURES – Parking structures should utilize the following elements so that they do not predominate in any portion of the campus.

1. Building Connections – Pedestrian-oriented spaces should connect campus buildings and parking structures, enhancing pedestrian access/circulation to buildings and through the campus. Space between garages and buildings should be a minimum of 40 feet in width and should be designed as an attractive pedestrian corridor.

2. Complementary Form and Materials – Parking structures should be designed to reflect and complement principal campus buildings with related architectural forms, materials, surfaces/finishes and massing. Vehicular and pedestrian entrance locations should relate to adjacent building entrances and pedestrian ways.

3. Visual Impact – Parking structures should be less prominent than principal buildings. Wherever possible, parking structures should be made to recede visually by selectively using materials, screening, and/or massing (lower heights or larger setbacks).

4. Auto Entrances – should be designed as architectural features, with attractive framed openings, lighting, gates, surfacing, and/or other elements that are consistent with an urban village streetscape environment. Auto entrances should not be located directly across a street or way from a main building entrance or lobby.
5. **Pedestrian Entrances** - Attractive, easily accessible pedestrian entrances are particularly important for encouraging pedestrian activity. Pedestrian entrances should be located adjacent to vertical circulation (stairs and elevators) and should provide easy access to significant points on campus. Elevations fronting on the Greenway should be considered for primary egress from the parking structures to the ground. Where parking structures form the corner of a street or way, corner entrance lobbies are strongly recommended. Handicap accessible stalls and electric car charging stations in the parking structure should be located near pedestrian entrances.

6. **Rooftop Treatment** - Parking structure roofs should have attractively finished paving, a solid parapet wall and guardrail, clearly marked egress points to vertical circulation and screening in the form of trellises, plant materials and other elements that provide shade and improve appearance as viewed from nearby buildings.

7. **Façade Design** - Above grade parking structures should be consistent with all applicable General Building Design guidelines, above. In general, structures should be designed with an attractive building base. Elevations fronting on open space areas may include exterior stairways and an integrated green wall system.

8. **Openings** - Openings in above grade structures should be designed similar to building windows, with square or rectangular shapes, trim, sills, and/or other details. Slanted openings associated with sloped "scissor" parking floors should not be created.

9. **Interior Lighting** - should be designed and shielded as needed to prevent glare from affecting adjacent buildings, streets, and ways.

10. **Glare Reduction** - Visual impacts on surrounding building and site areas from vehicle headlights circulating in parking structures should be minimized.
III. Pedestrian Ways & Campus Open Spaces

A. GENERAL

1. Pedestrian Network - A network of attractive pedestrian circulation routes that allows site access should be provided, employing city streets as well as on-site walks and through-building ways. Large, uninterrupted building footprints and/or other impediments that block through-campus pedestrian circulation should not be created.

2. Framing - Clearly defined, attractive, and gracious pedestrian ways and open spaces should be provided. These spaces should be framed or bordered by buildings and/or plant materials.

3. Focus/Purpose - Campus open spaces should be defined by buildings. Open space areas should have a focus, such as a building entrance, landmark, or garden/sitting area.

4. Variety of Open Spaces - A variety of attractive pedestrian-oriented spaces should be provided within the campus area. Intimate outdoor spaces for groups of 4-10 should be provided, with sitting areas for informal meetings, eating...
lunch or sunning. These small gathering spaces should be relatively private and easily accessible from indoor spaces. They should be separated from primary building entry points, pedestrian circulation routes and places of public gathering and could be unique in personality and character.

B. OPEN SPACE DESIGN

1. **Common Design Elements** - Pedestrian ways and open spaces should incorporate common and/or complementary design elements; i.e., paving materials and motifs, plant species and arrangements, lighting fixtures and arrangements, and furnishings should recur to strengthen campus image and pedestrian orientation.

2. **Destination/Focus** - Pedestrian ways should originate/terminate at a defined destination, such as a building entrance, transit stop, landmark/amenity, and/or street crossing.

3. **Composition** - Open spaces should generally have a simple composition and layout of paths and landscaping.

C. SPECIAL CONDITIONS

1. **Open Space Adjacent to Spinas Park** - It is assumed that the City may establish a program in the future for improvements, subject to the provisions of an approved development agreement and/or City Council action. However, the Precise Plan recommends that a pedestrian crossing to the existing Park be created at Page Street, and that a pedestrian and bicycle connection be extended through the existing and any expanded Park area to link to this crossing.

2. **On-Site Child Care Facility** - Child care is a recommended component of campus development. As part of an on-site child care facility, a secure children's playground would typically be required. The location of this playground should be located on or near the greenway or near the outdoor space adjacent to Spinas Park.

3. **Bayshore Freeway / US 101 Campus Image and Identification** - A green edge is recommended along US 101 to create an attractive border for the campus, screen parked cars, and reduce traffic noise. However, the campus is an important component of the City's economic development efforts, and some visibility of campus buildings should be maintained. A dense planting of deciduous trees that allow filtered and seasonal views is recommended. A focal design feature is recommended at the north end of Warrington Avenue.

4. **Transit Hub** - A central transit hub should be located on Broadway and/or Warrington to accommodate shuttle(s) and bus stops and related transfer activity. The transit hub should be a specially-designed area that is part of or adjacent to the Campus Center and its associated commercial, food-, and/or child care-related activities.

D. CENTRAL CAMPUS GREENWAY - The Greenway is envisioned as a wide linear open space that extends through the four blocks located between Broadway and Bay Road. Highly visible crosswalks should be located at Hurlingame, Warrington, and Barron Avenues to connect the four sections of the Greenway. The following potential elements are included as part of the Greenway: a central Promenade; Tree Bosques; a Loop Walkway; a Campus Center; and Specimen Accent Trees.

1. **Central Promenade** - A central Promenade should extend the length of the Greenway, from Douglas Avenue to Spinas Park. The Promenade should have specific smaller open spaces embedded within it, including areas for lunchtime gatherings, small group meetings, and outdoor exercise.

2. **Tree Bosques** - Linear Bosques of tightly-spaced trees can be used to define the Promenade, link the various phases of the campus from east to west, and screen adjacent parking structures.

 a. **Lighting** - Lighting within the Bosques should be consistent and of a pedestrian scale, able to produce enough light for evening events. Seating should be
Chapter II - Development Standards & Urban Design Guidelines

The Promenade should have specific smaller open spaces embedded within it.

Linear Bosques of tightly-spaced trees can be used to define the Promenade.

Seating should be provided, and could include a mix of casual moveable tables and chairs and fixed benches.

A Loop Walkway should circle around the Greenway.

Consistent lighting fixtures should illuminate the path without becoming a strong element in the landscape. At-grade lighting is recommended where lighting levels can be minimal.
provided, and could include a mix of casual moveable tables and chairs and fixed benches. Fixed benches should share a similar character.

b. **Paving** - A variety of surfacing types should be considered beneath the trees. Decomposed granite is strongly encouraged because of its ability to reflect heat and because of its malleability and permeability. Other materials could include crushed gravel and/or permeable concrete paving.

3. **Loop Walkway** - A Loop Walkway should circle around the Greenway along the perimeter of surrounding buildings and through the greenway center.

 a. **Paving** - The Loop Walkway should have a consistent paving material throughout. Its width should vary as necessary to accommodate different levels of pedestrian traffic.

 b. **Lighting** - Consistent lighting fixtures should illuminate the path without becoming a strong element in the landscape. At-grade lighting is recommended where lighting levels can be minimal.

 c. **Seating** - Seating should be placed along the Loop Walkway and should be of a consistent character and style.

4. **Campus Center** - If three or more blocks are occupied by a single tenant or related tenants, a Campus Center should be created to act as the heart of the campus for visitors and employees. This area would be the preferred location for a shared cafeteria, small scale commercial, etc.

 a. **Location** - The Campus Center should be in a key location adjacent to the Warrington Avenue extension and the Transit Hub on Broadway and/or Warrington Avenue.

 b. **Spatial Form** - The Campus Center should have and/or incorporate a strong identity that is clear, recognizable, and attractive as viewed from surrounding campus buildings; e.g. squares, ovals, crescents, etc.

 c. **Seating** - Seating should be incorporated into the Campus Center as much as possible and should be in the form of walls and landscape area. Fixed seating should be placed towards the periphery of the space where it will not conflict with other potential uses.

 d. **Trees** - Trees should be used on the periphery of the Campus Center, so they will define the space without inhibiting its flexibility.

 e. **Surfacing and Amenities** - The Campus Center should contain contiguous and generous pedestrian-friendly surfaces such as attractive paving, as well as pedestrian amenities such as benches, lighting, and trash receptacles.

 f. **Functional Elements** - Functional elements within and adjacent to the Campus Center - drop-off driveways, major pedestrian ways, street crosswalks, etc. - should be designed to be subordinate to and enhance the overall composition of the space.

 g. **Central Landmark** - The Campus Center should contain a central landmark such as a fountain, pavilion, clock, floral/garden arrangement, and/or other form of public art that provides a focus and memorable image and encourages use.

 h. **Shade** - Shade should be provided in a variety of ways - e.g., by shade structures such as pergolas, trellises or canopies as well as deciduous trees.

5. **Specimen Accent Trees** - Large specimen trees should be specially selected and installed at key highly-visible locations in the Greenway.

IV. Streets & Streetscape

A. **URBAN STREETSCAPE CHARACTER** - Street trees and streetlights should be arranged in a formal manner with a regular
Spacing. Tree wells, sidewalk paving surfaces and design treatments, and bordering planter areas should have a crisp architectural appearance.

1. **Street Trees** - Deciduous shade trees should be planted along all street frontages at a minimum 36” box size at time of planting, as noted in the Standards. Plane trees and/or trees with similar characteristics are recommended for their canopy/shade characteristics. However, varying shade tree species from street to street should be considered. Special trees - e.g., flowering and/or interesting tree forms - are recommended at campus gateways and other special locations.

2. **Street Lights** - Attractive pedestrian-oriented street lights should be installed along all campus street frontages.

3. **Curbside Parking** - Curbside parking is recommended along all street frontages as both a pedestrian buffer and source of additional employee and visitor parking. Pedestrian crossings at the Greenway need to be accommodated; see Urban Design Concept diagram on page 23.

4. **Relationship of Trees, Lights and Parking** - Trees, lights and curbside parking spaces should be designed together to create an orderly appearance and minimize conflicts. Streetlights should be centered between trees to minimize light blocking. Tall-growing canopy trees that branch higher than lights should be used. Trees and lights should be located away from parked car door swing areas.

B. **BROADWAY** - Broadway is planned as the primary pedestrian and visitor access street into the campus, a potential future streetcar transit corridor, and an important gateway to the Friendly Acres neighborhood. Large street trees, generous sidewalks, pedestrian-oriented lighting, street furniture, and multiple pedestrian crossings should be established to create a gracious campus character. Existing London Plane street trees should remain, and additional infill trees should be planted to create a continuous canopy. Significant parking edge trees should be retained and incorporated into the required frontage setback area. Because Broadway is the primary pedestrian route, tree grates should be provided as needed to protect trees and root systems.

C. **BAY ROAD** - Bay Road will provide primary vehicular and parking access, and frontage parking structures should be set back and screened by dense tree and/or “greenwall” plantings to create an attractive landscaped frontage. Large street trees and widened sidewalks with a planting strip should be established to improve the aesthetics of this side of the campus.

D. **HURLINGAME AVENUE** - Depending upon traffic patterns at the time Blocks C and D are developed, consideration could be given to closing a portion of Hurlingame Avenue to create a pedestrian paseo. Pavers and/or other surfaces that are more pedestrian-oriented could be installed rather than typical roadway surfacing. Supplemental pedestrian-oriented lighting and landscaping could be incorporated as well, provided through access for an emergency vehicle is maintained.

E. **GATEWAY AND LANDMARK LOCATIONS** - Special gateway landscaping and/or structures are recommended at high visibility locations. Some gateways are primarily for campus orientation or direction. Others play a role in neighborhood traffic calming efforts.

1. **Douglas Avenue / Broadway** - A campus gateway sign and supporting landscape materials are recommended for this intersection, similar to the existing Mid-Point Technology Park campus gateway.

2. **Bay Road / Warrington Avenue** - A campus gateway design that is related to that provided at Douglas/Broadway is recommended.

3. **Bay Road / Second Avenue** - Neighborhood/park gateway/traffic calming feature is recommended.

4. **Broadway / Second Avenue** - Neighborhood gateway/traffic calming feature is recommended.
5. North End Warrington Avenue - A freeway-oriented campus landmark should be located at the northern end of Warrington Avenue. This landmark should be architectural in character, with form and materials that complement campus buildings.

F. TRANSIT STOPS - for campus shuttles and/or SamTrans bus service should be attractive pedestrian landmarks. They should include benches, shelters (with lighting), paving surfaces, and other amenities. Architectural elements should have a common design theme in terms of style, materials, color, etc.

V. Hardscape & Landscape Improvements

A. PAVING MATERIALS - recommended for pedestrian surfaces are listed below. All paving materials must meet Federal Americans with Disabilities Act (ADA) and State of California Title 24 requirements. In general, a maximum of two materials should be combined in a single application:

1. Stone - such as slate or granite.

2. Brick pavers.

3. Concrete unit pavers.

4. Poured-in-Place Concrete - All concrete walks should be tinted to reduce glare. Recommended enhancements include integral pigment, special aggregates, special scoring patterns, and ornamental insets, such as tile.

5. Other surfaces - As deemed appropriate by the City for a given application.

B. SIGNAGE - Signage should be provided that clearly identifies the primary building entrance by name, number and/or address. The signage program should be part of a comprehensive campus-wide signage and way-finding system.

1. Program and Theme - A coordinated signage program should be created that directs pedestrians and motorists to campus destinations. A common or complementary design theme should be employed.

2. Hierarchy of Signs - There should be a hierarchy of signs within the design theme; e.g., larger, motorist-oriented ar-
chitectural landmark signs at campus street entrances and major facilities, and smaller, pedestrian-oriented signs at walkways and open spaces.

C. PLANT MATERIALS AND LANDSCAPE TREATMENTS

1. Plant Materials – should be species that are drought tolerant/require a low amount of watering and should be selected and placed to reflect both ornamental and functional characteristics.

a. Deciduous trees - should be the predominant large plant material used. They should be used as street trees and located adjacent to buildings and within parking areas to provide shade in summer and allow sun in winter. Species should be selected that have deep roots, provide fall color, and minimize litter and other maintenance problems.

b. Evergreen shrubs and trees - should be used as a screening device along rear property lines, around mechanical appurtenances, and to obscure grillwork and fencing associated with subsurface and freestanding parking garages.

c. Flowering shrubs and trees - should be used where they can be most appreciated, adjacent to walks and open space areas, or as a frame for building entrances, stairs, and walks.

d. Specimen Trees – Tree species that have special characteristics, yet require high levels of maintenance, may be considered for limited locations at key highly visible locations along the Greenway.

e. Flowers with annual or seasonal color – are recommended to highlight special locations, such as courtyards, building entrances, or access drives.

f. Irrigation Systems - Mechanical irrigation should be provided for all planted areas; see standards and implementation requirements for use of recycled water. Subterranean drip systems should also be considered.

g. Drought-Tolerant Non-Invasive Plant Species should be used in all site landscaping for their low water needs.

h. Turf - should be used for programmed recreation and/or leisure areas and should use recycled water when available.

2. Trees along Streets and Ways - Street trees are an indicator of publicly-accessible space, as well as a source of shade and green. They are required along all publicly accessible streets and major pedestrian ways. Deciduous trees are recommended, as noted above. In general, a consistent species should be used along the length of a street or way. Tree grates should be provided in locations where street trees are adjacent to on-street parking; where trees are not adjacent to on-street parking, planting strips should be considered.

a. Street Tree Wells - Trees should be planted in curbside tree wells with a minimum horizontal dimension of 4 feet (6 feet preferred). Where possible, larger subsurface areas should be created to encourage root growth; approaches include trenches, structural soil, etc.

b. Size - Street trees should be a minimum 36 inch box size at time of planting.

c. Spacing - Trees should be located 30′ feet on center; unless otherwise noted for specific Precise Plan area conditions.

3. Landscaping in Surface Parking Lots - should be designed as an integral feature of the overall campus development plan.

a. Grid Tree Arrangement - In general, trees should be distributed evenly throughout parking lots to provide shade and enhance appearance, particularly as seen from adjacent streets and buildings. A regularly spaced grid of trees is encouraged, with trees planted toward...
the rear of parking stalls rather than at the front of bays. This arrangement provides more even distribution of vegetation and shade throughout the parking area.

b. **Other Landscape Approaches** - should be considered. These could utilize trellises, columns, walls, and/or arbors with vines, hedges, wind rows, or other elements.

4. **Fountains** - are recommended in hardscape open spaces to provide cooling in hot weather, with additional consideration given to windy locations. The design and materials should be related to the principal building(s) and/or palette of on-site furnishings. Fountains should utilize recycled water.

5. **Mounding Earth** - or berming is not recommended. Terracing should be used as an alternative to or in combination with sloped earth areas.

D. **RECOMMENDED PLANT LIST** - The lists below illustrate types of plants that are consistent with the Precise Plan’s guidelines. Other plants are permitted. Final palettes may vary according to availability and site design. Planting areas within the Greenway, setbacks and courtyards shall be selected for drought tolerance, hardiness, beauty and ability to support regional habitat, including pollinators and bird species.

1. **Street, Greenway Promenade, and Parking Lot Trees** – These trees have been approved for use by the Redwood City Council, and are recommended for their habitat value and attractive foliage. Final tree selection(s) should be made for upright growth characteristics, growth speed to maturity, drought tolerance, shade provided, and availability. Note: Oaks produce acorns and should not be used in pedestrian-intensive locations.
 - Red Maple, Acer rubrum (red fall foliage cultivars)
 - Ash, Fraxinus Americana ‘Autumn Purple’
 - Ginkgo, Ginkgo biloba (male only)
 - Brisbane Box, Lophostemon confertus
 - Columbia Sycamore, Platanus acerifolia ‘Columbia’
 - Coast Live Oak, Quercus agrifolia
 - Shumard Red Oak, Quercus shumardii
 - American Elm, Ulmus Americana (DED resistant varieties)
 - Frontier Elm, Ulmus ‘Frontier’
 - Cork Oak, Quercus suber
 - London Plane Tree, Platanus acerifolia
 - English Oak, Quercus robur
 - Kentucky Coffee Tree, Gymnocladus dioicus
 - Tupelo, Nyssa sylvatica

2. **Medium-Size and Flowering Trees** – These trees are recommended for special locations where canopy shade is not necessary.
 - Chinese Pistache, Pistacia chinensis
 - Flowering Pear, Pyrus calleryana
 - Crape Myrtle, Lagerstroemia indica (Powdery Mildew resistant varieties)
 - Western Redbud, Cercis occidentalis
 - Toyon, Heteromeles arbutifolia

3. **Courtyard Shrubs** - Plants recommended for their attractive qualities such as colorful blossoms, unique foliage, and seasonal qualities. Most also have habitat value. These plants are recommended for use in courtyards as well as visual areas.
 - Butterfly Bush, Buddleja, spp.
 - Australian Fuschia, Correa spp.
 - Coral Bells, Huechra maicanthra
 - Lantana, Lantana davivii
 - Lavender, Lavender spp.
 - Lion’s Tail, Leonurus spp.
 - Matilija poppy, Romneya coulteri
 - Sage (Salvia spp.)
4. **Habitat Plants** - Plants recommended for habitat value. Also have attractive flowers and foliage. These plants are not recommended for use in courtyards.

- Manzanita sp. Arctostaphylos spp.
- California black-flowering sedge, Carex nudata
- Oregon grape, Mahonia aquifolium
- Monkeyflower, Mimulus spp.
- Red-flowering currant, Ribes sanguineum
- California wild rose, Rosa spp.
- Thimbleberry, Vaccinium ovalum

5. **Evergreen/Screen Trees** – These trees and other similar conifers should be used where a dense screen is required and security is not a significant issue.

- Canary Island Pine, Pinus canariensis
- Coast Redwood, Sequoia sempervirens

6. **Rain Garden Plants** – On-site percolation of storm water is a Precise Plan sustainability objective; however, the campus has high groundwater levels and special design techniques will be required, subject to City review. Biofiltration and swale plant species should be selected for inundation tolerance, attractiveness, size hardiness, and habitat value. Because these plants are necessarily selected for inundation tolerance, they require moderate watering in dry months. The following list was adapted from the Bay Area Storm Water Management Agencies Association’s list of plant species for infiltration areas and the Brooklyn Botanic Garden’s list of California Rain Garden Plants. The list below illustrates types of plants that can achieve these goals. Other plants are permitted.

- Elk clover, Aralia californica
- Pipevine, Aristolochia californica
- Western spicebush, Calycanthus occidentalis
- California black-flowering sedge, Carex nudata
- Hazelnut, Corylus cornuta ‘Californica’
- Umbrella plant, Darmera peltata
- California gray rush, Juncus patens
- Monkeyflower, Mimulus spp.
Chapter II - Development Standards & Urban Design Guidelines

Best management practices such as bio-filters, rain gardens, permeable paving and swales, should be integrated into the streetscape and open space design.

- Ninebark, Physocarpus capitatus
- California polypody, Polypodium californicum
- Red-flowering currant, Ribes sanguineum
- Salmonberry, Rubus spectabilis
- Coneflower, Rudbeckia californica

E. PUBLIC ART - Potential locations for public art should be identified in campus open spaces.

F. MATURE TREES - Existing heritage trees and mature trees (i.e. those with a trunk circumference of 38” or greater, per City Code) should be evaluated for incorporation in site and streetscape landscape plans. A formal, urban street tree planting approach is recommended by the Precise Plan, however, and preservation of existing trees is generally most appropriate within internal site areas.

G. EXTERIOR LIGHTING - The system for building-mounted lighting should be part of a comprehensive site lighting system for the campus that supports the overall architectural design concept and identity.

1. Fixtures - Light fixtures and lamp types should be consistent with other campus facilities and should be selected based on light color, luminescence, quality and energy efficiency.

2. Building Entrances - All primary building entrances should have a higher level of lighting than surrounding uses.

3. Safety - Light fixtures and locations should help reinforce personal safety and security and facilitate way-finding.

4. Light Pollution - There should not be unnecessary light spillage and glare to the surrounding neighborhood.

H. STORMWATER MANAGEMENT - Best management practices such as bio-filters, rain gardens, permeable paving and swales, should be integrated into the streetscape and open space design. Where biological measures cannot be used, mechanical devices should be used in their place. The site may be subject to periodic flooding, and the design of landscape elements should take this into consideration.
1. **Rain Gardens** – These are functional elements within the Campus Greenway, responsible for handling all stormwater runoff and storm-water detention. The primary objective of the Rain Gardens is to slow water velocity coming from building roofs and hardscape areas, and to treat the water using a bio-filtration system. Rain Gardens should be shallow, depressed areas in the landscape, planted with vegetation that can withstand periodic inundation of water. Rain Garden design strategies shall include:

 a. **Location** - Locate rain gardens away from buildings such that water is not directed toward foundation structures.

 b. **Soil** - Use amended soil and avoid compaction of soil to increase infiltration.

 c. **Draining** - Provide a sub-drain to promote infiltration.

 d. **Slope** - Surrounding land should be sloped towards the rain garden.

 e. **Overflow Management** - Direct overflow to a discharge point, or provide an overflow drain within the rain garden.
Douglas Avenue (South of Broadway)

Street Cross Sections

Douglas Avenue

Frontage Plan

November 2010
ATTACHMENT 2

PRINCIPLES TO GUIDE NEGOTIATION OF THE STANFORD IN REDWOOD CITY DEVELOPMENT AGREEMENT
September 15, 2009

INTRODUCTION

Stanford University (Stanford) has proposed a phased redevelopment of approximately 35 acres of existing commercial property (currently zoned Industrial - Restricted) within the City of Redwood City (City) to provide a campus with sufficient flexibility to allow for a mix of office, research/development and medical clinic uses. To facilitate this development, Stanford and the City have engaged in the formation of a Precise Plan to govern the long-term physical development of the project site. An Environmental Impact Report as well as Fiscal and Economic Impact Study are also in preparation to analyze the impacts of the project described by the Precise Plan. As a companion to the Precise Plan, Stanford and the City are discussing entering into a development agreement.

Development agreements are contracts negotiated between the project applicant and public agencies. Neither Stanford, as applicant, nor the City, as the lead governmental agency, is required to enter into a development agreement. A development agreement stipulates mutually agreed upon benefits and obligations for each party. Development agreements facilitate and secure entitlements for phased projects over long periods of time and can provide a means for addressing significant unavoidable environmental, fiscal, and economic impacts, such as those which are expected to result from this Project. In this case, potential project-related issues such as traffic, economics, housing and childcare are being evaluated and the results of the pertinent studies will be considered in the establishment of appropriate terms for this Development Agreement.

This document addresses the proposed guiding principles that will shape the Development Agreement, as discussed by Stanford and City staff.

GUIDING PRINCIPLES

A. Positive Mutual Benefits: To the extent feasible, the Development Agreement’s terms should provide mutual benefits to the City, the neighborhoods surrounding the Project and the Project itself for many years to come.

B. Community Based Benefits: The Development Agreement should focus on community benefits that relate to the Project, either by addressing Project impacts beyond what is otherwise required by conditions of approval and environmental mitigation, or by providing benefits that Stanford, as a unique academic institution, is best situated to provide.

C. Fiscal Balance: The Development Agreement should support the City Council’s goal of long-term fiscal sustainability, enhance the City’s near-term fiscal and economic health in
measureable ways, support and enhance the local economy, and provide for the long-term nature of the Project.

D. Plan Integrity: The Development Agreement should recognize and support the concepts, vision and intent of the Stanford in Redwood City Project as depicted in the final Precise Plan that will be considered for approval by the Planning Commission and the City Council. The City and Stanford recognize that the Project will be a phased development implemented over a period of up to 30 years.

CATEGORIES OF COMMUNITY BENEFITS AND PRINCIPLES SPECIFIC TO THOSE CATEGORIES

1. Fiscal and Economic Impacts. The fiscal and economic impacts of the Project will be evaluated in a Fiscal and Economic Impact Study commissioned by the City. The Development Agreement should:

 - Recognize that the Stanford in Redwood City Project will remove industrially zoned land and improvements from the City’s property tax rolls for those properties occupied by Stanford, which has the potential to impact City resources and services over the long term;
 - Consider the project’s relationship to the City’s housing, educational, and childcare needs and resources;
 - Recognize that the proposed entitlements will substantially increase the potential development capacity of the project site and could increase the value of the project site;
 - Recognize that the Stanford in Redwood City Project has the potential to enhance City and local business revenues through sales, development fees and economic activity associated with construction activity as the property is developed over many years;
 - Recognize that the Stanford in Redwood City Project has the potential to bring long-term, high-value jobs to the City which will enhance City and local business revenues through increased economic activity in the City;
 - Support and enhance the Project’s ability to increase local business activity through transportation connections which increase accessibility from the Project site to downtown Redwood City; and
 - Support and enhance the Project’s ability to promote a healthy and diverse Redwood City economy.

2. Transportation, Linkages and Parking. The Stanford in Redwood City Project will be part of an integrated City and Project approach to improving overall neighborhood mobility that will benefit Project employees, future tenants, and residents of the adjacent neighborhood. The Development Agreement’s terms should:

 - Support the City’s and Stanford’s robust efforts to discourage travel by single-occupancy vehicles through vigorous promotion of all forms of mass transit as well as cycling and walking;
- Enhance transportation connections between the Project site and downtown Redwood City, and between the Project site and the City’s Caltrain station;
- Improve pedestrian and bicycle circulation within the Project and its immediate vicinity; and
- Support provision of sufficient on-site parking for Project employees.

3. Infrastructure/City Services. The Development Agreement’s terms should:

- Provide that Stanford’s improvements and upgrades to existing infrastructure are an overall benefit to the local area and the City;
- Support the City’s and Stanford’s efforts to promote the conservation of water and energy; and
- Support the expansion of the City’s recycled water program.

4. Sustainability. The Development Agreement’s terms should:

- Support Stanford’s and the City’s efforts to conserve natural resources throughout all aspects of the Project, including sustainable design, construction practices, and building features, including those affecting energy, water, operations, transportation and associated greenhouse gas emissions.

5. Building Community. The Development Agreement should:

- Allow for those amenities and programs that Stanford is uniquely situated to provide and that will improve the health, education and well-being of the surrounding community and the City, while also supporting the Project objectives.

6. Design and Placemaking. The design of the Stanford in Redwood City site will be governed by the Precise Plan being prepared by the City. The Development Agreement’s terms should:

- Promote development that creates a strong sense of place, and harmonizes with and enhances the value and quality of nearby existing neighborhoods;
- Support properly phased development over the term of the Development Agreement; and
- Provide for publicly accessible open space as part of the Project while also maintaining Project open space reserved solely for tenant use.
NEGOTIATION PROCESS

It is in the best interests of the City, Stanford, and the community to conduct a thoughtful, interest-based negotiation to arrive at a development agreement that can be considered for approval by the City Council and Stanford. To that end the following mechanisms shall provide the structure and format for the process.

1. Adoption of Guiding Principles
2. Oversight or steering committee
3. Rules of engagement
4. Dispute resolution
5. On-going Stanford community liaison